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COOPER’S THEOREMS 
 

Early in my career I stopped doing mathematical 

research in the traditional sense and concentrated on 

developing mathematics curriculum. Being at a new 

university, as Macquarie University was in the 1970’s I 

had enormous freedom to teach what I wanted, 

especially in the senior years. 

   As a result I started writing my notes and, in the 

course of so doing, I developed a certain amount of new 

material. It could hardly be called ‘research’ but these 

are some theorems that may be of interest that you 

probably won’t find anywhere else. 

 

THE CUBIC FIT METHOD (Elementary Calculus) 

This is an improvement on Simpson’s Rule that, 

provided you know the derivative of the function, gives 

more accurate results for a similar amount of work. It 

comes from fitting a cubic to a strip based on the 

ordinates and derivatives at the endpoints. It doesn’t 

need an even number of strips and consists of the 

Simpson’s Rule formula, plus a ‘correction’: 
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where h = width of the strips. 
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For example the percentage errors in the estimates of 
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x dx with 4 strips are: 

Trapezium Rule 0.3% 

Simpson’s Rule 0.02% 

Cubic Fit Method 0.004% 

 

SIMPSON’S RULE FOR DOUBLE INTEGRALS 

(Techniques of Calculus) 

 To obtain an estimate of the double integral 
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 f(x, y) dx  dy  

divide the rectangle [a,b]  [c,d] into smaller rectangles. 

There must be an even number in each direction so that 

each of these smaller rectangle is one quarter of a larger 

rectangle, which I call a cell. 

 The estimate is obtained by approximating the 

surface on each cell by a quadric surface, that is, by a 

surface with equation z = ax2 + by2 + cxy + dx + ey + f. 

  

For each cell take the ordinates in the middle of the cell 

and in the middle of each side. An ordinate is a 

boundary ordinate if it is on the boundary of the entire 

rectangle. All others are called internal ordinates. 
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For example, if we take 3 cells horizontally and 2 

vertically, the ordinates at the points marked with an 

white circle are boundary ordinates and those at the 

points marked with a black circle are internal ones. 

 

 

 

 

 

 

Theorem: An estimate of the integral of f(x, y) over the 

rectangle [a, b]  [c, d], where we divide this into h  k 

rectangle (h, k both being even) is: 
2hk

3
 ( )2 internal ordinates +  boundary ordinates   

 

Example: Estimate the integral of x3y over the rectangle 

[0, 4]  [0, 4] using 2 cells horizontally and 2 vertically. 

Solution: Here h = k = 1. 
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Omitting the rows where the ordinate is zero: 

x y boundary internal 

1 1  1 

2 1  8 

3 1  27 

4 1 64  

1 2  2 

3 2  54 

1 3  3 

2 3  24 

3 3  81 

4 3 192  

1 4 4  

3 4 108  

TOTALS 368 200 

The estimate = 
2

3 (368 + 400) = 512 which, surprisingly, 

is the exact value. 

This is the exact value. 

 

SECOND ORDER EXPANSION (Matrices) 

 This is an improvement on the cofactor method 

for evaluating determinants. While it involves somewhat 

less computation its main purpose is to simplify the 

proofs of the properties of determinants. 
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 If A is a square matrix then 
st

ij
(A) is the matrix 

obtained from A by deleting rows s, t and columns i, j. 

|A| =  
i<j

(−1)1+i+j







a1i a1j

a2i a2j
.|

12

ij
(A)| . 

 

THE GENERALISED TRACE METHOD (Matrices) 

 This computes the coefficients of the 

characteristic polynomial of a square matrix, without 

having to evaluate |I − A|, with its error prone 

calculations, manipulating expressions in . 

The k-th trace, trk(A), is the sum of all the k  k 

sub-determinants that can be obtained from A by 

deleting corresponding rows and columns. So tr0(A) = 1, 

tr1(A)is the normal trace, and trn(A), for an n  n matrix 

is just |A|. 

 

The characteristic polynomial of the n  n matrix A is: 

() = 
0

n

(−1)k trk(A)n−k . 

If A = 






7 8 9

4 5 6

1 2 3
 , tr1(A) = trace = 15, 

tr2(A) = 3 + 12 + 3 = 18 and tr3(A) = |A| = 0. 

So A() = 3 − 152 + 18. 
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THE ONE-WAY EUCLIDEAN ALGORITHM 

(Techniques of Algebra) 

 The Euclidean Algorithm finds the GCD of two 

integers, a and b. However if you want to express this in 

the form ah + bk you have to work backwards through 

all these calculations. Here’s a method whereby enough 

information is collected along the way to find a suitable 

h and k once the GCD is obtained. 

 

Suppose we want to find GCD(92,24) and wish to 

express it as 92h + 24k. 

a q b 

217  0 

91 2 = INT(217,91) 1 

35 = 217 − 2.91 2 = INT(91,35) −2 = 0 − 2.1 

21 = 91 − 2.35 1 = INT(35,21) 5 = 1 − 2.(−2) 

14 = 35 − 1.21 1 = INT(21,14) −7 = −2 − 1.5 

7 = 21 − 14.1 2 = INT(14,7) 12 = 5 − 1.(−7) 

0 = 14 − 2.7   

The a column contain the successive remainders. 

The pattern for the b column is similar: 

 

 b0 

q       b1 

 b0 − qb1 

 

The GCD is the last non-zero entry in the a column = 7. 
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k is the last entry in the b column = 12. 

So 7 = 217.h + 91.12. We can easily find h = −5. 

. 

INTEGRATION CLOSED CLASSES OF 

FUNCTIONS (Techniques of Calculus) 

{a(x) + b(x) sin x + c(x) cos x} and 

{a(x) + b(x)tan−1x + c(x)log(1 + x2) + 
d(x)

1 + x2 }, 

where a(x), b(x), c(x) and d(x) are real polynomials, 

is closed under integration. 

 

NEWTON’S METHOD FOR FUNCTIONS OF 2 

VARIABLES (Techniques of Calculus) 

I’d be surprised if this hasn’t been done before but I 

can’t find it, so I’m tentatively making a claim on it until 

I discover that indeed it’s been done before. 

 If we wish to solve the system 


f1(x,y) = 0

 f2(x,y) = 0 
  we begin 

with a guess (x0, y0) and calculate 

 (x1, y1) as follows: 


x1 = x0 − ex 

y1 = y0 − ey 
  where ex = 







z1 d1y

z2 d2y
  

and ey = 






d1x z1

d2x z2
  

where  = 






d1x d1y

d2x d2y
 . 
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Here d1x = 






f1

x 0
 , d1y = 







f1

y 0
 , d2x = 







f2

x 0
 , d2y = 







f2

y 0
 , 

the respective partial derivatives evaluated at (x0, y0), 

and z1 = f1(x0, y0) and z2 = f2(x0, y0). As with the one-

variable Newton’s Method we iterate, making (x1, y1) the 

new (x0, y0). Provided we’re reasonably close to a 

solution this converges to one. 

We can use this method to find complex solutions to 

equations f(z) = 0 by considering real and imaginary 

parts.  

 

THE TOO MANY PRIMES TEST (Galois Theory) 

 There are many tests for primeness in an integer 

polynomial – none of them works in the majority of 

cases. The too many primes test is a useful addition to 

Eisenstein’s method, and all the others. 

 If f (x)  ℤ[x] has degree n > 5 and f(m) is prime 

or  1 for at least n + 3 integer values of m, the f(x) is 

prime over ℚ. For n = 4 or 5 this target is 9. For n = 2 or 

3, it is n + 3. (These targets are best possible.) 

COLLINEARITY LEMMA (Geometry) 

 This is a useful lemma for simplifying certain 

proofs in Projective Geometry, including Desargue’s 

Theorem and Pappus’ Theorem. It is based on the real 

projective plane being thought of a 1- and 2-dimensional 

subspaces of R3 (points and lines respectively). 
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If  P = p, Q, R, S  are collinear projective points such 

that  P, Q, R  are distinct and  P  S, then for a suitably 

chosen vector  q  and scalar    we may express the four 

points as:  P = p, Q =  q, R = p + q, S = p + q. 

Moreover ,if the Euclidean plane is embedded in ℝ3 and 

P*, Q*, R* and S* are the corresponding points on the 

plane,  is their cross ratio. 

ALEXANDER GROUPS (Topology) 

Let K be a knot and let M be a map for it. We 

define an abelian group for the knot in terms of 

generators and relations as follows. Assign a generator 

to each face, except for the outside and one adjacent 

face, which are both assigned 0. At each crossing create 

a relation as follows: 

 

 

                                                    a + b = c + d 

 

 

produces the relation  a + b = c + d. The abelian group 

with these generators and relations, which I call the 

Alexander Group, is an invariant for the knot. It can be 

generalized to links, and for knots it can be generalized 

to a module over the ring of rational Laurent 

polynomials in t, by using the relation: 

t(a + b) + c + d = 0 

a b 

c d 
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if the overcrossing is coming from the right. From this it 

is possible to obtain the Alexander polynomial. 

 

ALEXANDER GROUPS OF CHAINS (Topology) 

Although this was proved by Simon Byrne, a vacation 

scholar that I supervised at Macquarie University, I 

played a small part in it. 

 

A chain is a set of two or more non-intersecting closed 

curves in R3 where each is linked to the next. (For 

example, the Olympic logo.) There are two ways that a 

pair of adjacent links can occur in a projection of a chain 

and we’ll refer to these as positive and negative 

connections as follows: 

 

 

 

 

 

 

         +ve connection                        −ve connection 

 

This distinction only occurs at the level of projections 

because both are equivalent for the chain itself. 

Suppose a chain with n  2 links has its ends 

joined. In a projection onto a plane (where the only 

crossings are those that join each link to its neighbours) 

let m be the absolute difference between the number of 
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positive and negative connections. The Alexander group 

of this closed chain is ℤ2 
n−2  ℤ2m if m > 0 and 

                          ℤ2 
n−2  ℤ if m = 0. 

(Here ℤ2 
n−2 denotes the direct sum of n − 2 copies of 

ℤ2.) 

 

CLASS EQUATIONS (Group Theory) 

Let t*n denote n conjugacy classes of size n. 

• Let G be a group of order 2N with a conjugacy class of 

size N. Then N is odd and the class equation for G is 

2N = 1 + 2*





N−1

2
  + N. 

• Let G be a group of order 3N with two conjugacy 

classes of size N. Then |G| = N and the class equation 

for G is 3N = 1 + 3t1 + 3t2 + … + 3tk + N + N where the 

class equation for G is: 

N = 1 + t1*3 + t2*3 + … + tk*3. 

• Let G be a group of order pN, where p is prime, with 

p−1 conjugacy classes of size N. Then G is a Frobenius 

group with kernel G of order N. 

 

POWER AUTOMORPHISMS (Group Theory) 

A power automorphism, , of a group is one that fixes 

every subgroup (i.e. (x) = xn for all x, but the n may 

vary). Every power automorphism is central (induces the 

identity automorphism on G/Z(G)). 
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SYLOW SUBGROUPS OF SYMMETRIC GROUPS 

(Group Theory) 

Let G(r) denote the wreath product of r copies of G and 

Gr the direct product of r copies of G. If p is prime and 

N = arar−1 ... a1 a0 in base p notation, the Sylow p-

subgroups of SN are isomorphic to: 

Cp(r)ar  Cp
(r−1)ar−1  ...  Cp

(2)a2  Cp
a1, where Cp is the 

cyclic group of order p. 

 

p-ORDER and p-INERTIA (Number Theory) 

 If p is prime and is coprime with m, the p-order 

of m is u(p, m). the smalles positive u such that pu  

1(mod p). If p, q are distinct primes the p-inertia of q, 

denoted by v(p, q), is the largest v such that 

pu(p,q)   1(mod qv). 

If 2 < p < q are primes then: 

u(p, qt) = 


 u(p, q) if 0 < t  v(p, q)

u(p, q) qt−v(p,q) if t > v(p, q)
 . 
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THE UNIQUENESS OF 10 (Number Theory) 

I thought I had a proof of this theorem, but mislaid it. 

The proof I use in my Number Theory Notes is due to a 

colleague, Gerry Myerson. 

 

The number 10 is the only composite number such that 

all its positive divisors have the form nk + 1 for k > 1. 

 

THE GROUP OF NON-ZERO MULTIPLICATIVE 

FUNCTIONS (Number Theory) 

 A function F(n) on ℕ is multiplicative if F(mn) = 

F(m)F(n) whenever m, n are coprime. The Möbius 

product F * G of two multiplicative functions F, G is 

defined by: 

(F * G)(n) = 
d|n

F(d)G






n

d
  = 

d|n

F 






n

d
G(d) . 

We can write this symmetrically as (F * G)(n) = 


cd=n

 F(c)G(d) , and so F * G = G * F for all 

multiplicative functions. 

 The set of all non-zero multiplicative functions is 

an abelian group under the Möbius product. It has an 

identity 1:ℕ → ℕ defined by 1(n) = 


1 if n = 1    

0 otherwise
 . 
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